Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The 3D dust complexity maps used in the main result of Section 4 <a href="https://arxiv.org/abs/2404.11009">"Imprints of the Local Bubble and Dust Complexity on Polarized Dust Emission," Halal et al. 2024</a>. Use of these data must cite that paper. We provide 12 maps, corresponding to the 12 posterior sample 3D dust extinction maps of <a href="https://www.aanda.org/articles/aa/full_html/2024/05/aa47628-23/aa47628-23.html">Edenhofer et al. 2023</a>, which extend radially out to 1.25 kpc. The maps we provide are in Galactic coordinates and are only defined over the masks described in <a href="https://arxiv.org/abs/2404.11009">Halal et al. 2024</a>.more » « less
-
Abstract We present evidence for scale-independent misalignment of interstellar dust filaments and magnetic fields. We estimate the misalignment by comparing millimeter-wave dust-polarization measurements from Planck with filamentary structures identified in neutral-hydrogen (Hi) measurements from Hi4PI. We find that the misalignment angle displays a scale independence (harmonic coherence) for features larger than the Hi4PI beamwidth (16.′2). We additionally find a spatial coherence on angular scales of . We present several misalignment estimators formed from the auto- and cross-spectra of dust-polarization and Hi-based maps, and we also introduce a map-space estimator. Applied to large regions of the high-Galactic-latitude sky, we find a global misalignment angle of ∼2°, which is robust to a variety of masking choices. By dividing the sky into small regions, we show that the misalignment angle correlates with the parity-violatingTBcross-spectrum measured in the Planck dust maps. The misalignment paradigm also predicts a dustEBsignal, which is of relevance in the search for cosmic birefringence but as yet undetected; the measurements ofEBare noisier than those ofTB, and our correlations ofEBwith misalignment angle are found to be weaker and less robust to masking choices. We also introduce an Hi-based dust-polarization template constructed from the Hessian matrix of the Hiintensity, which is found to correlate more strongly than previous templates with Planck dustBmodes.more » « less
-
Inutsuka, Shu-ichiro; Aikawa, Yuri; Muto, Takayuki; Tomida, Kengo; Tamura, Motohide (Ed.)The interstellar medium (ISM) contains filamentary structure over a wide range of scales. Understanding the role of this structure, both as a conduit of gas across the scales and a diagnostic tool of local physics, is a major focus of star formation studies. We review recent progress in studying filamentary structure in the ISM, interpreting its properties in terms of physical processes, and exploring formation and evolution scenarios. We include structures from galactic-scale filaments to tenth-of-a-parsec scale filaments, comprising both molecular and atomic structures, from both observational and theoretical perspectives. In addition to the literature overview, we assemble a large amount of catalog data from different surveys and provide the most comprehensive census of filamentary structures to date. Our census consists of 22 803 filamentary structures, facilitating a holistic perspective and new insights. We use our census to conduct a meta-analysis, leading to a description of filament properties over four orders of magnitudes in length and eight in mass. Our analysis emphasize the hierarchical and dynamical nature of filamentary structures. Filaments do not live in isolation, nor they generally resemble static structures close to equilibrium. We propose that accretion during filament formation and evolution sets some of the key scaling properties of filaments. This highlights the role of accretion during filament formation and evolution and also in setting the initial conditions for star formation. Overall, the study of filamentary structures during the past decade has been observationally driven. While great progress has been made on measuring the basic properties of filaments, our understanding of their formation and evolution is clearly lacking. In this context, we identify a number of directions and questions we consider most pressing for the field.more » « less
-
We present the first degree-scale tomography map of the dusty magnetized interstellar medium (ISM) from stellar polarimetry and distance measurements. We used the RoboPol polarimeter at Skinakas Observatory to conduct a survey of the polarization of starlight in a region of the sky of about four square degrees. We propose a Bayesian method to decompose the stellar-polarization source field along the distance to invert the three-dimensional (3D) volume occupied by the observed stars. We used this method to obtain the first 3D map of the dusty magnetized ISM. Specifically, we produced a tomography map of the orientation of the plane-of-sky component of the magnetic field threading the diffuse, dusty regions responsible for the stellar polarization. For the targeted region centered on Galactic coordinates (l,b) ≈ (103.3°, 22.3°), we identified several ISM clouds. Most of the lines of sight intersect more than one cloud. A very nearby component was detected in the foreground of a dominant component from which most of the polarization signal comes and which we identified as being an intersection of the wall of the Local Bubble and the Cepheus Flare. Farther clouds, with a distance of up to 2 kpc, were similarly detected. Some of them likely correspond to intermediate-velocity clouds seen in HIspectra in this region of the sky. We found that the orientation of the plane-of-sky component of the magnetic field changes along distance for most of the lines of sight. Our study demonstrates that starlight polarization data coupled to distance measures have the power to reveal the great complexity of the dusty magnetized ISM in 3D and, in particular, to provide local measurements of the plane-of-sky component of the magnetic field in dusty regions. This demonstrates that the inversion of large data volumes, as expected from the PASIPHAEsurvey, will provide the necessary means to move forward in the modeling of the Galactic magnetic field and of the dusty magnetized ISM as a contaminant in observations of the cosmic microwave background polarization.more » « less
-
ABSTRACT We measure the mean-squared polarization fraction of a sample of 6282 Galactic cold clumps at 353 GHz, consisting of Planck Galactic cold clump (PGCC) catalogue category 1 objects [flux densities measured with signal-to-noise ratio (S/N) > 4]. At 353 GHz, we find the mean-squared polarization fraction, which we define as the mean-squared polarization divided by the mean-squared intensity, to be (4.79 ± 0.44) × 10−4 equation to an $$11\, \sigma$$ detection of polarization. We test if the polarization fraction depends on the clumps’ physical properties, including flux density, luminosity, Galactic latitude, and physical distance. We see a trend towards increasing polarization fraction with increasing Galactic latitude, but find no evidence that polarization depends on the other tested properties. The Simons Observatory, with angular resolution of order 1 arcmin and noise levels between 22 and $$54\, \mu$$K−arcmin at high frequencies, will substantially enhance our ability to determine the magnetic field structure in Galactic cold clumps. At $$\ge 5\, \sigma$$ significance, we predict the Simons Observatory will detect at least ∼12 000 cold clumps in intensity and ∼430 cold clumps in polarization. This number of polarization detections would represent a two orders of magnitude increase over the current Planck results. We also release software that can be used to mask these Galactic cold clumps in other analyses.more » « less
-
Context. Filamentary structures in nearby molecular clouds have been found to exhibit a characteristic width of 0.1 pc, as observed in dust emission. Understanding the origin of this universal width has become a topic of central importance in the study of molecular cloud structure and the early stages of star formation. Aims. We investigate how the recovered widths of filaments depend on the distance from the observer by using previously published results from the Herschel Gould Belt Survey. Methods. We obtained updated estimates on the distances to nearby molecular clouds observed with Herschel by using recent results based on 3D dust extinction mapping and Gaia . We examined the widths of filaments from individual clouds separately, as opposed to treating them as a single population. We used these per-cloud filament widths to search for signs of variation amongst the clouds of the previously published study. Results. We find a significant dependence of the mean per-cloud filament width with distance. The distribution of mean filament widths for nearby clouds is incompatible with that of farther away clouds. The mean per-cloud widths scale with distance approximately as 4−5 times the beam size. We examine the effects of resolution by performing a convergence study of a filament profile in the Herschel image of the Taurus Molecular Cloud. We find that resolution can severely affect the shapes of radial profiles over the observed range of distances. Conclusions. We conclude that the data are inconsistent with 0.1 pc being the universal characteristic width of filaments.more » « less
-
Abstract Using the Australian Square Kilometre Array Pathfinder to measure 21 cm absorption spectra toward continuum background sources, we study the cool phase of the neutral atomic gas in the far outer disk, and in the inner Galaxy near the end of the Galactic bar at longitude 340°. In the inner Galaxy, the cool atomic gas has a smaller scale height than in the solar neighborhood, similar to the molecular gas and the super-thin stellar population in the bar. In the outer Galaxy, the cool atomic gas is mixed with the warm, neutral medium, with the cool fraction staying roughly constant with the Galactic radius. The ratio of the emission brightness temperature to the absorption, i.e., 1 − e − τ , is roughly constant for velocities corresponding to Galactic radius greater than about twice the solar circle radius. The ratio has a value of about 300 K, but this does not correspond to a physical temperature in the gas. If the gas causing the absorption has kinetic temperature of about 100 K, as in the solar neighborhood, then the value 300 K indicates that the fraction of the gas mass in this phase is one-third of the total H i mass.more » « less
-
Abstract We present the most sensitive and detailed view of the neutral hydrogen ( $${\rm H\small I}$$ ) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal $${\rm H\small I}$$ in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K ( $$1.6\,\mathrm{mJy\ beam}^{-1}$$ ) $$\mathrm{per}\ 0.98\,\mathrm{km\ s}^{-1}$$ spectral channel with an angular resolution of $$30^{\prime\prime}$$ ( $${\sim}10\,\mathrm{pc}$$ ). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire $${\sim}25\,\mathrm{deg}^2$$ field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes $${\rm H\small I}$$ test observations.more » « less
-
Abstract We characterize Galactic dust filaments by correlating BICEP/Keck and Planck data with polarization templates based on neutral hydrogen (Hi) observations. Dust polarization is important for both our understanding of astrophysical processes in the interstellar medium (ISM) and the search for primordial gravitational waves in the cosmic microwave background (CMB). In the diffuse ISM, Hiis strongly correlated with the dust and partly organized into filaments that are aligned with the local magnetic field. We analyze the deep BICEP/Keck data at 95, 150, and 220 GHz, over the low-column-density region of sky where BICEP/Keck has set the best limits on primordial gravitational waves. We separate the Hiemission into distinct velocity components and detect dust polarization correlated with the local Galactic Hibut not with the Hiassociated with Magellanic Streami. We present a robust, multifrequency detection of polarized dust emission correlated with the filamentary Himorphology template down to 95 GHz. For assessing its utility for foreground cleaning, we report that the Himorphology template correlates inBmodes at a ∼10%–65% level over the multipole range 20 <ℓ< 200 with the BICEP/Keck maps, which contain contributions from dust, CMB, and noise components. We measure the spectral index of the filamentary dust component spectral energy distribution to beβ= 1.54 ± 0.13. We find no evidence for decorrelation in this region between the filaments and the rest of the dust field or from the inclusion of dust associated with the intermediate velocity Hi. Finally, we explore the morphological parameter space in the Hi-based filamentary model.more » « less
An official website of the United States government

Full Text Available